If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.414x^2-3x+1.414=0
a = 1.414; b = -3; c = +1.414;
Δ = b2-4ac
Δ = -32-4·1.414·1.414
Δ = 1.002416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{1.002416}}{2*1.414}=\frac{3-\sqrt{1.002416}}{2.828} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{1.002416}}{2*1.414}=\frac{3+\sqrt{1.002416}}{2.828} $
| 5x-7-3x+18+8x-11=x | | 2x+7x=1 | | -0.2x²+2x-1.8=(-1.8) | | (-0.2x²)+(2x)-1.8=-1.8 | | -0.2x²+2x-1.8=-1.8 | | 31-5x=6-10 | | 0,5x^2+1,5x+1=0 | | 12/t=4+48/t | | 31-5x=-13-7x | | 3(a+7)=5(2a+3) | | 6/1*y=54 | | 4x2+13=0 | | x^2+(1/3)x+1=0 | | x^2+1/3x+1=0 | | x2-16=0 | | 5(5x-2)=2(9x=3) | | -15+-1x+6x2)=0 | | -15+-1x+6x2=0 | | 5a^2-10a+1=0 | | 3/4=p+1/4 | | 6x2-x-15=0 | | k(k+4)(k+8)=3k | | 35x^2-26x-48=0 | | 24x^2-3x+1,414=0 | | (x+8)^2=128 | | 40x^2-156x-100=0 | | x^2-0.95x+0.15=0 | | 15p2+13p+2=0 | | |2x-x^2-3|=1 | | 3(5p+9)-4()=3p-1 | | -7x^2+70x-175=0 | | 20x+5x^2-105=0 |